metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Santiago Reinoso, Pablo Vitoria, Leire San Felices, Luis Lezama and Juan M. Gutiérrez-Zorrilla*

Departamento de Química Inorgánica, Facultad de Ciencias, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain

Correspondence e-mail: qipguloj@lg.ehu.es

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.049 wR factor = 0.115 Data-to-parameter ratio = 21.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(di-2-pyridylmethanediol- $\kappa^3 N, O, N'$)copper(II) diacetate tetrahydrate

The crystal structure of $[Cu(C_{11}H_{10}N_2O_2)_2](C_2H_3O_2)_2\cdot 4H_2O$ reveals an extended $O-H\cdot\cdot O$ hydrogen-bond network between helicoidal chains of water molecules and layers of $[Cu(N,O,N'-dpkdiol)_2]^{2+}$ complex cations and acetate anions held together by means of carboxylate–diol hydrogen bonds. The cation has crystallographic inversion symmetry.

Received 19 June 2003 Accepted 27 June 2003 Online 30 June 2003

Comment

The di-2-pyridyl-ketone ligand (dpk) has been observed to undergo hydration of the ketocarbonyl group, forming a *gem*diol after initial N, N'-coordination to a transition metal (Wang *et al.*, 1986). This *gem*-diol ligand (dpkdiol) can coordinate both as an N, N'-bidentate ligand (Parker *et al.*, 2000) or as an N, O, N'-tridentate ligand, either protonated (Sommerer *et al.*, 1993; Tangoulis *et al.*, 1997; Yang *et al.*, 1998; Serna *et al.*, 1999) or deprotonated (Sommerer *et al.*, 1990; Breeze *et al.*, 1996; Tong *et al.*, 1998; Hemmert *et al.*, 1999; Woltz *et al.*, 2002). The title complex, (I), which was obtained in an attempt to prepare a copper-dpk–Keggin complex, consists of [Cu(N, O, N'dpkdiol)₂]²⁺ complex cations, acetate anions and uncoordinated water molecules.

The Cu atom lies in a distorted elongated octahedral CuN_4O_2 environment. The equatorial coordination positions are occupied by the N atoms of the dpkdiol ligands, while two hydroxyl groups occupy the axial ones. The two hydroxyl groups of the ligands and the acetate anions form two strong face-to-face carboxylate-diol hydrogen bonds, leading to trimolecular entities built up of one cationic complex and two acetate anions (Fig. 1). These entities are placed in layers parallel to the (001) plane, which are connected by an extended $O-H\cdots O$ hydrogen-bond network between the O atoms of the acetate anions and helicoidal chains of water running parallel to the *b* axis (Fig. 2).

Experimental

C 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

A solution containing 68 mg of CuCl₂·2H₂O, 25 mg of oxalic acid and 74 mg of dpk in 30 ml of water and 10 ml of methanol was added to a solution of 667 mg of $K_4SiW_{12}O_{40}$ in 50 ml of water and a violet

Cell parameters from 6500

 $D_x = 1.408 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

reflections

T = 293 (2) K

Prism, purple

 $R_{\rm int} = 0.044$

 $h = -12 \rightarrow 12$

 $k = -11 \rightarrow 8$

 $l = -32 \rightarrow 32$

refinement

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

 $\theta_{\rm max} = 30^{\circ}$

 $0.37 \times 0.23 \times 0.10 \text{ mm}$

4484 independent reflections

2765 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

 $w = 1/[\sigma^2(F_o^2) + (0.0588P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

independent and constrained

 $\begin{array}{l} \theta = 3.5 \text{--} 25^{\circ} \\ \mu = 0.77 \text{ mm}^{-1} \end{array}$

View of the molecular structure of (I) (twice the asymmetric unit), with 50% probability displacement ellipsoids. The suffix *a* on atom labels represents symmetry operation -x, -y, -z.

Figure 2

View of the crystal packing along the b axis.

precipitate was formed. The title compound was obtained upon recrystallization of the precipitate from a 2:1 mixture of an acetate buffer and DMF. Elemental analysis (%): found (C, H, N) 46.76, 5.16, 8.42; calculated for $C_{26}CuH_{26}N_4O_8.4H_2O$: 47.45, 5.21, 8.51. IR (cm⁻¹): 1523, 1427, 1230, 1217, 1032.

Crystal data

```
\begin{split} & [\mathrm{Cu}(\mathrm{C}_{11}\mathrm{H}_{10}\mathrm{N}_{2}\mathrm{O}_{2})_{2}]^{-}\\ & (\mathrm{C}_{2}\mathrm{H}_{3}\mathrm{O}_{2})_{2}\cdot4\mathrm{H}_{2}\mathrm{O}\\ & M_{r}=658.11\\ & \mathrm{Monoclinic}, P2_{1}/n\\ & a=8.617~(1)~\mathrm{\AA}\\ & b=7.8765~(9)~\mathrm{\AA}\\ & c=23.103~(3)~\mathrm{\AA}\\ & \beta=98.00~(1)^{\circ}\\ & V=1552.8~(3)~\mathrm{\AA}^{3}\\ & Z=2 \end{split}
```

Data collection

Oxford Diffraction Xcalibur diffractometer ω scans Absorption correction: analytical (*CrysAlisRED*; Oxford Diffraction, 2002) $T_{\min} = 0.793, T_{\max} = 0.931$ 12971 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.115$ S = 0.964480 reflections 211 parameters

Table 1

Selected geometric parameters (Å, °).

1.408 (3)
1.381 (2)
106.14 (6)
124.37 (15)
116.25 (13)
125.69 (16)
114.77 (14)
. ,
12 11 12 11

Symmetry code: (i) -x, -y, -z.

Table 2 Hydrogen-bonding geometry (Å, $^\circ).$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O14-H14O1	0.82	1.78	2.603 (2)	178
O15−H15···O2	0.82	1.79	2.607 (3)	177
O10−H10A···O2	0.848 (10)	1.958 (13)	2.788 (3)	166 (3)
$O10-H10B\cdots O11^{ii}$	0.845 (10)	1.906 (12)	2.741 (3)	169 (3)
O11−H11A···O1	0.848 (10)	1.915 (14)	2.741 (3)	164 (3)
$O11 - H11B \cdot \cdot \cdot O10^{iii}$	0.842 (10)	1.910 (11)	2.748 (3)	173 (4)

Symmetry codes: (ii) $-\frac{1}{2} - x, \frac{1}{2} + y, -\frac{1}{2} - z$; (iii) 1 + x, y, z.

The H atoms of the water molecules and hydroxyl groups of the dpkdiol ligand were located in a Fourier difference map. The positions of all remaining H atoms were calculated geometrically. Water molecule H atoms were refined with the O-H distance constrained to 0.85 (1) Å. All remaining H atoms were refined as riding, with isotropic displacement parameters fixed at 1.2 (aromatic C) or 1.5 (methyl and hydroxyl groups) times the equivalent isotropic displacement parameters of their parent atoms.

metal-organic papers

Data collection: *CrysAlisCCD* (Oxford Diffraction, 2002); cell refinement: *CrysAlisRED* (Oxford Diffraction, 2002); data reduction: *CrysAlisRED*; program(s) used to solve structure: *DIRDIF99.2* (Beurskens *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by MCT (MAT2002-03166). SR thanks Gobierno Vasco for his Doctoral Fellowship.

References

- Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M. (1999). *The DIRDIF99 Program System*. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Breeze, S. R., Wang, S., Greedan, J. E. & Raju, N. P. (1996). *Inorg. Chem.* 35, 6944–6951.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hemmert, C., Renz, M., Gornitzka, H., Soulet, S. & Meunier, B. (1999). Chem. Eur. J. 5, 1766–1774.
- Oxford Diffraction (2002). *CrysAlisCCD* and *CrysAlisRED*. Version 1.169. Oxford Diffraction, 20 Nuffield Way, Abingdon, Oxfordshire OX14 1RL, England.
- Parker, O. J., Aubol, S. L. & Breneman, G. L. (2000). Polyhedron, 19, 623-626.
- Serna, Z., Barandika, M. G., Cortés, R., Urtiaga, M. K. & Arriortua, M. I. (1999). Polyhedron, 18, 249–255.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sommerer, S. O., Baker, J. D., Jensen, W. P., Hamza, A. & Jacobson, R. A. (1993). *Inorg. Chim. Acta*, **210**, 173–176.
- Sommerer, S. O., Jensen, W. P. & Jacobson, R. A. (1990). *Inorg. Chim. Acta*, **172**, 3–11.
- Tangoulis, V., Raptopoulou, C. P., Terzis, A., Paschalidou, S., Perlepes, S. P. & Bakalbassis, E. G. (1997). *Inorg. Chem.* 36, 3996–4006.
- Tong, M.-L., Yang, G., Chen, X.-M. & Ng, S. W. (1998). Acta Cryst. C54, 217– 219.
- Wang, S. L., Richardson, J. W., Briggs, S. J. & Jacobson, R. A. (1986). Inorg. Chim. Acta, 111, 67–68.
- Woltz, J., Westcott, B. L., Grundwell, G., Zeller, M., Hunter, A. D. & Sommerer, S. O. (2002). Acta Cryst. E58, m609–m610.
- Yang, G., Tong, M.-L., Chen, X.-M. & Ng, S. W. (1998). Acta Cryst. C54, 732– 734.