Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Santiago Reinoso, Pablo Vitoria, Leire San Felices, Luis Lezama and Juan M. Gutiérrez-Zorrilla*

Departamento de Química Inorgánica, Facultad de Ciencias, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain

Correspondence e-mail: qipguloj@lg.ehu.es

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.049$
$w R$ factor $=0.115$
Data-to-parameter ratio $=21.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(di-2-pyridylmethanediol- $\boldsymbol{\kappa}^{3} N, O, N^{\prime}$)copper(II) diacetate tetrahydrate

The crystal structure of $\left[\mathrm{Cu}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ reveals an extended $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond network between helicoidal chains of water molecules and layers of $\left[\mathrm{Cu}\left(N, O, N^{\prime}-\text { dpkdiol }\right)_{2}\right]^{2+}$ complex cations and acetate anions held together by means of carboxylate-diol hydrogen bonds. The cation has crystallographic inversion symmetry.

Comment

The di-2-pyridyl-ketone ligand (dpk) has been observed to undergo hydration of the ketocarbonyl group, forming a gemdiol after initial N, N^{\prime}-coordination to a transition metal (Wang et al., 1986). This gem-diol ligand (dpkdiol) can coordinate both as an N, N^{\prime}-bidentate ligand (Parker et al., 2000) or as an N, O, N^{\prime}-tridentate ligand, either protonated (Sommerer et al., 1993; Tangoulis et al., 1997; Yang et al., 1998; Serna et al., 1999) or deprotonated (Sommerer et al., 1990; Breeze et al., 1996; Tong et al., 1998; Hemmert et al., 1999; Woltz et al., 2002). The title complex, (I), which was obtained in an attempt to prepare a copper-dpk-Keggin complex, consists of $\left[\mathrm{Cu}\left(N, O, N^{\prime}-\right.\right.$ dpkdiol) $\left.)_{2}\right]^{2+}$ complex cations, acetate anions and uncoordinated water molecules.

The Cu atom lies in a distorted elongated octahedral $\mathrm{CuN}_{4} \mathrm{O}_{2}$ environment. The equatorial coordination positions are occupied by the N atoms of the dpkdiol ligands, while two hydroxyl groups occupy the axial ones. The two hydroxyl groups of the ligands and the acetate anions form two strong face-to-face carboxylate-diol hydrogen bonds, leading to trimolecular entities built up of one cationic complex and two acetate anions (Fig. 1). These entities are placed in layers parallel to the (001) plane, which are connected by an extended $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond network between the O atoms of the acetate anions and helicoidal chains of water running parallel to the b axis (Fig. 2).

Experimental

A solution containing 68 mg of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 25 \mathrm{mg}$ of oxalic acid and 74 mg of dpk in 30 ml of water and 10 ml of methanol was added to a solution of 667 mg of $\mathrm{K}_{4} \mathrm{SiW}_{12} \mathrm{O}_{40}$ in 50 ml of water and a violet

Received 19 June 2003
Accepted 27 June 2003
Online 30 June 2003

Figure 1
View of the molecular structure of (I) (twice the asymmetric unit), with 50% probability displacement ellipsoids. The suffix a on atom labels represents symmetry operation $-x,-y,-z$.

Figure 2
View of the crystal packing along the b axis.
precipitate was formed. The title compound was obtained upon recrystallization of the precipitate from a $2: 1$ mixture of an acetate buffer and DMF. Elemental analysis (\%): found (C, H, N) 46.76, 5.16, 8.42; calculated for $\mathrm{C}_{26} \mathrm{CuH}_{26} \mathrm{~N}_{4} \mathrm{O}_{8} .4 \mathrm{H}_{2} \mathrm{O}: 47.45,5.21,8.51$. IR $\left(\mathrm{cm}^{-1}\right)$: 1523, 1427, 1230, 1217, 1032.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]$ -
$\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=658.11$
Monoclinic, $P 2_{1} / n$
$a=8.617$ (1) \AA
$b=7.8765$ (9) \AA
$c=23.103$ (3) \AA
$\beta=98.00(1)^{\circ}$
$V=1552.8(3) \AA^{3}$
$Z=2$
$D_{x}=1.408 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6500 reflections
$\theta=3.5-25^{\circ}$
$\mu=0.77 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, purple
$0.37 \times 0.23 \times 0.10 \mathrm{~mm}$

Data collection
Oxford Diffraction Xcalibur diffractometer
ω scans
Absorption correction: analytical
(CrysAlisRED; Oxford
Diffraction, 2002)
$T_{\text {min }}=0.793, T_{\text {max }}=0.931$
12971 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.115$
$S=0.96$
4480 reflections 211 parameters

4484 independent reflections
2765 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=30^{\circ}$
$h=-12 \rightarrow 12$
$k=-11 \rightarrow 8$
$l=-32 \rightarrow 32$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0588 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.34 \mathrm{e} \mathrm{A}^{-3}$
Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$1.9918(17)$	$\mathrm{O} 14-\mathrm{C} 7$	$1.408(3)$
$\mathrm{Cu} 1-\mathrm{N} 13^{\mathrm{i}}$	$2.0257(18)$	$\mathrm{O} 15-\mathrm{C} 7$	$1.381(2)$
$\mathrm{Cu} 1-\mathrm{O} 14^{\mathrm{i}}$	$2.3990(14)$		
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 13^{\mathrm{i}}$	$87.86(7)$	$\mathrm{N} 13-\mathrm{Cu} 1-\mathrm{O} 14^{\mathrm{i}}$	$106.14(6)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 13$	$92.14(7)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Cu} 1$	$124.37(15)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 13$	$87.86(7)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{Cu} 1$	$116.25(13)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 14^{\mathrm{i}}$	$75.63(6)$	$\mathrm{C} 12-\mathrm{N} 13-\mathrm{Cu} 1$	$125.69(16)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 14^{\mathrm{i}}$	$104.37(6)$	$\mathrm{C} 8-\mathrm{N} 13-\mathrm{Cu} 1$	$114.77(14)$
$\mathrm{N} 13^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 14^{\mathrm{i}}$	$73.86(6)$		

Symmetry code: (i) $-x,-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O14-H14 \cdots O1	0.82	1.78	$2.603(2)$	178
O15-H15 \cdots O2	0.82	1.79	$2.607(3)$	177
O10-H10A \cdots O2	$0.848(10)$	$1.958(13)$	$2.788(3)$	$166(3)$
O10-H10B \cdots O11 $^{\text {ii }}$	$0.845(10)$	$1.906(12)$	$2.741(3)$	$169(3)$
O11-H11A \cdots O1 $^{\text {Oiii }}$	$0.848(10)$	$1.915(14)$	$2.741(3)$	$164(3)$
O11-H11B \cdots O10 $^{\text {ii }}$	$0.842(10)$	$1.910(11)$	$2.748(3)$	$173(4)$

Symmetry codes: (ii) $-\frac{1}{2}-x, \frac{1}{2}+y,-\frac{1}{2}-z$; (iii) $1+x, y, z$.

The H atoms of the water molecules and hydroxyl groups of the dpkdiol ligand were located in a Fourier difference map. The positions of all remaining H atoms were calculated geometrically. Water molecule H atoms were refined with the $\mathrm{O}-\mathrm{H}$ distance constrained to 0.85 (1) \AA. All remaining H atoms were refined as riding, with isotropic displacement parameters fixed at 1.2 (aromatic C) or 1.5 (methyl and hydroxyl groups) times the equivalent isotropic displacement parameters of their parent atoms.

Data collection: CrysAlisCCD (Oxford Diffraction, 2002); cell refinement: CrysAlisRED (Oxford Diffraction, 2002); data reduction: CrysAlisRED; program(s) used to solve structure: DIRDIF99.2 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by MCT (MAT2002-03166). SR thanks Gobierno Vasco for his Doctoral Fellowship.

References

Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Gould, R. O., Israel, R. \& Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Breeze, S. R., Wang, S., Greedan, J. E. \& Raju, N. P. (1996). Inorg. Chem. 35, 6944-6951.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hemmert, C., Renz, M., Gornitzka, H., Soulet, S. \& Meunier, B. (1999). Chem. Eur. J. 5, 1766-1774.
Oxford Diffraction (2002). CrysAlisCCD and CrysAlisRED. Version 1.169. Oxford Diffraction, 20 Nuffield Way, Abingdon, Oxfordshire OX14 1RL, England.
Parker, O. J., Aubol, S. L. \& Breneman, G. L. (2000). Polyhedron, 19, 623-626.
Serna, Z., Barandika, M. G., Cortés, R., Urtiaga, M. K. \& Arriortua, M. I. (1999). Polyhedron, 18, 249-255.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sommerer, S. O., Baker, J. D., Jensen, W. P., Hamza, A. \& Jacobson, R. A. (1993). Inorg. Chim. Acta, 210, 173-176.

Sommerer, S. O., Jensen, W. P. \& Jacobson, R. A. (1990). Inorg. Chim. Acta, 172, 3-11.
Tangoulis, V., Raptopoulou, C. P., Terzis, A., Paschalidou, S., Perlepes, S. P. \& Bakalbassis, E. G. (1997). Inorg. Chem. 36, 3996-4006.
Tong, M.-L., Yang, G., Chen, X.-M. \& Ng, S. W. (1998). Acta Cryst. C54, 217219.

Wang, S. L., Richardson, J. W., Briggs, S. J. \& Jacobson, R. A. (1986). Inorg. Chim. Acta, 111, 67-68.
Woltz, J., Westcott, B. L., Grundwell, G., Zeller, M., Hunter, A. D. \& Sommerer, S. O. (2002). Acta Cryst. E58, m609-m610.
Yang, G., Tong, M.-L., Chen, X.-M. \& Ng, S. W. (1998). Acta Cryst. C54, 732734.

